文件名称:数据降维和聚类中的若干问题研究(英文版)

  • 所属分类:
  • 数学书籍
  • 文件评级:
  • 上传时间:
  • 2020-07-25
  • 浏览/下载:
  • 6次 / 1次
  • 文件大小:
  • 12.08mb
  • 提 供 者:
  • 相关连接:
  • 下载说明:
  • 别用迅雷下载,失败请重下,重下不扣分!

介绍说明

数据降维和聚类中的若干问题研究(英文版) 出版时间:2011年版 内容简介   A central research area in data mining and machine learning is probabilis-tic modeling because it has a number of advantages over non-probabilistic methods. Given a probabilistic model, one could fit the model using max-imum likelihood (ML) method or Variational Bayesian (VB) method. In ML method, (1) many algorithms may converge very slowly and thus com- putationally efficient algorithms are often desirable; and (2) the choice of a suitable modelis difficult though many model selection criteria exist and thus criteria with higher accuracy are desired. In VB method, employingdifferent priors may yield different performances and thus studies on how to choose a suitable prior are important. In this book, three sub-topics were studied: Modeling, Estimation and Model selection for dimension reduc- ition and clustering. 目录 1 Introduction 1.1 PCA and Latent Variable Models 1.1.1 PCA 1.1.2 Latent Variable Models 1.1.3 FA and PPCA 1.2 Motivations and Contributions 1.3 Organization of the Book 2 ML Estimation for Factor Analysis: EM or non-EM 2.1 Introduction 2.2 FA Model and Three Estimation Algorithms 2.2.1 FA model 2.2.2 Lawley (1940)'s simple iteration algorithm 2.2.3 EM type algorithms 2.3 TheECME2 algorithm 2.3.1 The maximization in the first CM-step 2.3.2 The maximization in the second CM-step 2.3.3 Practical consideration 2.3.4 ECME2 vs. simpleiteration algorithm 2.4 The CMAlgorithm 2.4.1 The maximizationin the second CM-step 2.4.2 When will conditionlbe satisfied 2.4.3 Recursive computation ofthe matrix Bz 2.4.4 On the nature of stationary points 2.5 Simulations 2.5.1 Simulation Data 2.5.2 Performance Analysis 2.5.3 On different starting values 2.6 Conclusion and Future Work 2.7 Appendix 2.7.1 Proofs 2.7.2 Some Notes 3 Fast ML estimation for the Mixture of Factor Analyzers via an ECM Algorithm 3.1 Introduction 3.2 MFA model and an ECM algorithm …… 4 Mixture Model Selection:BIC or Hierarchical BIC 5 A Note on Variational Bayesian Factor Analysis 6 Bilinear Probabilistic Principal Component Analysis 7 Conclusions and discussions References
(系统自动生成,下载前可以参看下载内容)

下载文件列表

压缩包 :  [赵建华 著] 2011年版.pdf 列表

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

相关说明

  • 建筑资料网是交换下载平台,下载的内容请自行研究使用或咨询上传人.
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 分卷压缩的大文件,请按顺序改名为:1.rar,2.rar,3.rar...再进行解压
  • 本软件为网上收集或会员上传,若无意中侵犯了您的版权,请与我们联系.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

建筑资料网 www.5imomo.com